Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe(2-x) nanosheets for high-performance hydrogen evolution.

نویسندگان

  • Xiaoli Zhou
  • Jun Jiang
  • Tao Ding
  • Jiajia Zhang
  • Bicai Pan
  • Jian Zuo
  • Qing Yang
چکیده

MoSe2 nanosheets have been extensively pursued due to the outstanding properties of this typical layered transition metal dichalcogenide (LTMD). In this work, we report a facile, fast strategy to synthesize scalable hierarchical ultrathin MoSe2-x (x ∼ 0.47) nanosheets. The nanosheets possess 2-5 Se-Mo-Se atomic layers and were synthesised through a bottom-up colloidal route within 20 mins under mild conditions from the reaction of MoO2(acac)2 with dibenzyl diselenide. The as-obtained hierarchical ultrathin MoSe2-x nanosheets are Mo-rich with a Se vacancy and show excellent HER performance with a small overpotential of ∼170 mV, large cathodic currents, and a Tafel slope of 98 mV per decade. Such high performance has been attributed to the unique structure of the Se vacancy defect, large surface area, as well as the enhanced conductivity. Meanwhile, the pathway can be extended as a general strategy to prepare other metal selenides, such as ultrathin WSe2 and SnSe nanosheets, and PbSe nanocrystals. It will also pave a new way to synthesize scalable nanostructured materials for intriguing nanodevices and large-scale applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrathin HNbWO6 nanosheets: facile synthesis and enhanced hydrogen evolution performance from photocatalytic water splitting.

Ultrathin monolayer HNbWO6 nanosheets have been successfully prepared through a simple and ultrafast ion intercalation assisted exfoliation method. These obtained highly dispersed nanosheets present enhanced photocatalytic hydrogen evolution activity compared to the nanosheets prepared by the traditionally time-consuming process.

متن کامل

High-yield synthesis of ultrathin silica-based nanosheets and their superior catalytic activity in H2O2 decomposition.

Ultrathin silica-based nanosheets with a thickness of ∼1 nm are fabricated in a low-cost and high-yield system excluding alkali metal ions. Unlike the Na-zeolites with a long capillary and microporous structure, the ultrathin nanosheets exhibit highly effective surface and active sites. As a result, the 0.4 wt% Pt-loaded nanosheets exhibit superior catalytic activity in H(2)O(2) decomposition w...

متن کامل

Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: a high mass activity and efficient electrocatalyst for the hydrogen evolution reaction† †Electronic supplementary information (ESI) available: Fig. S1–S14 and Tables S1–S3. See DOI: 10.1039/c6sc05687c Click here for additional data file.

The exploration of a facile strategy to synthesize porous ultrathin nanosheets of non-layered materials, especially with exposed reactive facets, as highly efficient electrocatalysts for the hydrogen evolution reaction (HER), remains challenging. Herein we demonstrate a chemical transformation strategy to synthesize porous CoP ultrathin nanosheets with sub-1.1 nm thickness and exposed {200} fac...

متن کامل

Ultrathin Nickel Hydroxide and Oxide Nanosheets: Synthesis, Characterizations and Excellent Supercapacitor Performances

High-quality ultrathin two-dimensional nanosheets of α-Ni(OH)2 are synthesized at large scale via microwave-assisted liquid-phase growth under low-temperature atmospheric conditions. After heat treatment, non-layered NiO nanosheets are obtained while maintaining their original frame structure. The well-defined and freestanding nanosheets exhibit a micron-sized planar area and ultrathin thicknes...

متن کامل

Hierarchical spheres constructed by defect-rich MoS2/carbon nanosheets for efficient electrocatalytic hydrogen evolution

Highly active and stable MoS2/carbon hierarchical spheres with abundant active edge sites were fabricated by a simple micro-emulsion procedure where PVP was used as the carbon source, and carbon disulfide as the sulfur source and oil phase in micro-emulsion to control the morphology of MoS2. Hierarchical spheres of MoS2/carbon with a diameter of ca. 500 nm were obtained and characterized by sca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 19  شماره 

صفحات  -

تاریخ انتشار 2014